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Abstract

A numerical scheme for the approximation of a parameter-dependent problem

is said to exhibit locking if the accuracy of the approximations deteriorates

as the parameter tends to a limiting value. A robust numerical scheme for the

problem is one that is essentially uniformly convergent for all values of the

parameter. We develop precise mathematical definitions for these terms, give

their quantitative characterization and prove some general theorems involving

locking and robustness. A model problem involving heat transfer is analyzed

in detail using this mathematical framework and various related computational

results are described. Applications of our theory to some different problems

involving locking are presented.
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1. Introduction.

The mathematical formulation of various problems involves dependency on a

crucial parameter t arising out of physical considerations. For example,

plate and shell models involve the thickness d of the plate or shell, the

analysis of elastic materials in general involves the Poisson ratio u, heat

transfer involves the ratio of conductivities g in different directions,

etc.

The numerical approximation of such parameter-dependent problems may suf-

fer when t lies close to a limiting value t (thickness d--40, Poisson

ratio u--0.5, ratio p of conductivities is very small ( 0-), etc.).

Most a priori error estimates yield optimal asymptotic convergence rates for

t > t fixed. Since these estimates are not uniform in t, a degeneration

often occurs for values of t close to t . This is manifested in actual

computations, where the error may not decrease at the predicted rate for t

close to t0  for most practical choices of the discretization parameter. We

refer to this phenomenon as locking. Various examples of locking have been

reported in the engineering and mathematical literature, see for example [1],

[6] - [10], [141 and others.

Locking involves the "shifting" of the asymptotic range of the calcu-

lations and will eventually disappear when the level of discretization is

increased enough, depending upon the strength of the degeneracy. Unfortunate-

ly, using brute force may lead to an infeasible level of discretization

required before convergence can be observed. Moreover, the prediction of the

discretization level for a required error tolerance is now quite complicated.

The most ideal remedy to locking is to employ a method that is robust,

i.e., one which is more or less uniformly convergent for all t. Various

robust methods (particularly mixed methods) have been proposed and analyzed in



the context of locking, see for example (7] for the plate problem, [], (9]

for a beam problem, (6], [14] for Poisson ratio locking, among others.

Generally, in the above mentioned papers, locking was addressed in an

ad hoc manner. in this paper our primary goal is to develop a systematic

mathematical approach which will allow precise characterization of locking and

robustness of a method as well as a quantitative measure of the locking and

robustness strength. In thp next section we present the definitions of these

concepts.

Our definitions are quite general in nature, so that one can treat

various different types of locking phenomena from the same point of view. The

examples analyzed in Sections 2 -5 (both theoretical and computational)

illustrate the need for this flexibility.

In the next section, we also derive various general theorems for a

special class of locking problems which are important in the context of appli-

cations and have been studied, for example, in [6]. These problems have a

well-defined associated limit problem for t---t O , satisfying certain proper-

ties. An examplP is the case of elasticity, where we get the Stokes' problem

in the limit as the Poisson ratio v--,O.5. In [6], it was shown that a

necessary condition for tte absence of locking is the satisfaction of a suit-

able approximability condition for this limit problem. We show in Theorems

2.2, 2.3 that this condition is sufficient as well, under certain conditions.

Section 3 contains detailed results on locking and robustness for the

model problem introduced in Section 2. Section 4 shows how the non-quasi-

uniformity of meshes used can be interpreted in terms of locking. In Section

5, we present a simplified analysis for the beam problem which was analyzed in

[i, [9]. In Section 6, we discuss a similar simplified analysis that is pos-

sible for the Stokes' problem, detailed results for which (using the theorems
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from Section 2) are presented in [5].

2. A model problem and the definitions.

To show the main features of locking, we first discuss an illustrative

model elliptic problem which arises in the study of (for example) heat trans-

fer through highly orthotropic materials with the conductivity being very

different in two perpendicular directions. Let the conductivities in the x1

and x2 directions be k, = 1 and k. = 1/t, respectively. We will be

particularly interested in the case that t is close to 0.

We assume homogeneous Dirichlet boundary data on rD and Neumann data on

rN  (with r = rD u r N) The corresponding partial differential equation we

study is

(2.1) au -1 a- u = f(x,y) in Q
ax2 t ax2

1 2

(2.2a) u = 0 on rD

au(2.2b) = g on rNo

where n is the usual conormal.c
C1 1Let HDW) = {u e H ( )tu = 0 on rD}. Then this problem may be put in

the variational form: Find u e H(0) such that for all v E H (),

1

(2.3) B (u,v) = F(v),
t

where

i Fo[8u 1 r0[ 1 1ru 8v 01]
(2.4) B1(uv) rI r-11- + I xJI -I dxdx2t J r 1 j 1J 1 J J 1

3



and

F(v) = f fvdxIdx2 + r gvds.

Let 0 = (-1,1) 2  for simplicity. We will be particularly interested in

the case that rD = o, f = 0, and g is chosen so that the true solution

(unique up to a constant) is given by

(2.5) u1 = sin x e-VrtX2.t 1

As t-)0, it is seen that u1 has a well defined limit sin x1  which is

constant in the x2 direction.
1

We also consider (2.3) with Bt replaced by its rotated form

(2.6) B 2(uv) au +8u dv v + u a1 xx

B= d)'dx xX I + 1 8x1J Lax a 1 2'

which corresponds to the case where the directions of the orthotropy do not

coincide with the xl,x 2 axes. By choosing g appropriately, we obtain as

the solution of our new variational problem the rotated version of (2.5)

(2.7) u2 = sin(x +x )e- Vr (X 2 - xl )

t 1 2

2
which is once again unique up to a constant. As t--40, ut becomes constant

in the n = x2 -x 1  direction.

We now approximate the above problems by the finite element method.

First we consider the h-version on a uniform square mesh on Q with 1, 4

and 16 square elements. In Figures 2.1 - 2.3 we have plotted the percentage

relative error versus number of degrees of freedom in a log-log scale, for

1 2p = 1, 2 and 4. In each case, results are shown for both ut and ut, for

t = 10 and 10 The dotted lines show the error in the H norm, while

the solid lines represent the error In the energy norm - their behavior is
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very similar (see Theorem 2.4).
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It is observed that for t= 10 , both cases lead to the error decreas-

-6
ing at the predicted asymptotic optimal rate. However, when t = 10 , only

the unrotated case shows the same behavior. The error for the rotated case

hardly decreases - this is described as a locking effect.
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Relative 2 for the p-version using four elements.t t

In Figures 2.4 - 2.5 the p-version has been used, with h = 2,1 (i.e.,

1 and 4 square elements). Figure 2.4 shows that the p-version with one

1 2
square is free of locking for both ut and ut since the value of t has no

appreciable effect on the observed rate of convergence. In Figure 2.5, it is

2 -6
seen that the error curve for ut with t = 10 Is shifted upwards compared

to the other curves, although the slope of this curve remains the same. This

suggests that the order of convergence remains the same, but the constant in

the error estimate is larger for t small. (This "shift" will, of course,

occur for the h-version as well, but will only be visible when h is of the

same order as t. Hence, in practice it is not observed.)

Figure 2.6 compares the h-version (p = 1,2) and p-version (one

square) for u2 in terms of the H(Q) norm error. This clearlytillustrates

the difference in terms of locking. It shows that the p-version is more

robust.
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In Section 3, we shall prove various results to explain these phenomena.

It should be noted that the above numerical results are only valid for the

practical range of h and p we have worked with. If refinement is con-

tinued, the asymptotic convergence rate would eventually be observed for any

fixed t.

We now develop mathenatically precise definitions of locking and robust-

ness.-

Assume first that the parameter t is an element of a set S which is

taken to be a semi-open interval of the form (a,b] (with the limiting value

of t being a). For each t, let B t(-,-) be a bounded symmetric bilinear

form defined ov~er a Hilbert space~ V such that the energy norm

(2.8) Ilull Et = (B t(u'u))1/

satisfies

(2.9) C I t 1U1V : 11E t : C 2 It

where 0 < C 1C 2< W, though C It)/C 2 (t) could -- * or 0 as t--4a.
1'

8 '



(Here, 11-11 V represents the usual norm of the quotient space if, for example,

we have a pure Neumann problem.)

Let X = {H t} be a family of linear spaces, Ht c H c V, where H is a

compactly Imbedded subspace of V. For each H let t denote an asso-

ciated norm and let HBt = {u e o [u t :1 }, where 11u][ H : Cu]]t . In our

examples, Ht may often be identical to H.

We are Interested in the approximation of "exact solutions" that lie in

H To this end, for each t, let 9t = {Vt} be a family of finite-
t.

dimensional subspaces of V with the dimension N being independent of t.

N
(We assume that a Vt  is given for each N e N, with N being unbounded.)

For ut e Ht, we consider the sequence of approximations uN E VN given byt ~t

(2.10) Bt(ut v) = Btut v) V v e Vt

i.e., a sequence of approximations to the problem Pt associated with

bilinear form Bt and solution set Ht. The family {tI can be identified

with an extension procedure Y, i.e., a rule which (for each t) gives a

method regarding how the dimension N of the approximate subspace is

increased. It is seen that (2.10) defines a projection of the space Ht  Into

NV However, the exact form of (2.10) may not allow us to consider certainVt•

problems, for example, those Involving inhomogeneous Dirichlet boundary condi-

tions. A more general form of (2.10) is therefore

(2.11) ut = Bu t ,

N N

where Bt : Ht--,V is a projection operator. The definitions that follow

are equally valid for (2.11) as well.

In case we are using (2.11), we will assume the existence of an energy

norm corresponding to (2.8) such that

9



(2.12) Hut u NIE t _ C inf IIu-vIj

t

for all N,t and C independent of t. Note that otherwise (2.12) follows

immediately from (2.10).

Remark. We introduced the set H t by help of the norm ll'IIt" This charac-

terization is a very special one. We can, instead, define Ht to be any
t

reasonable set. We will do this in Theorem 3.5.

We denote R0 = SxN and let R c R0  be a subset of the pairs (t,N)

under consideration.

Our final component is a family 9 = E t} of measures for the error

E : V--4R. We are interested in the errors E (u -u ) for problems t
t t t t t

Let us mention that some of Bt, HtP YtP Et may be independent of t (and

usually are).

For any R, we now define the locking ratio Lt,N) = L(t,N,R,XY,9,1)

(0 < n 5 b-a) for the problem {t} a < t 5 b, by

sup E (u -u
B t t t

(2.13) L(t,N) = utEHt N
inf sup Et(ut-u t

t But)

(t,N)ER uteHt

where R = {(t,N), t 2 a+id 0 R.

Remark. The locking ratio compares the performance of the method at parameter

value t to the best possible performance for reasonable values of t, which

are characterized by t 2 a +71. In most applications, the Infimum in the

denominator over R Is the same as that ovep R, so that -q can be taken

arbitrarily close to zero (and appears in the definition essentially as a

N
technicality). This is because typically, the error In ut Is smallest when

the problem is least singular.

10



Let us illustrate this ratio by considering the bilinear forms (2.4),

-1 -2 -4 -61
(2.6) with R = {0 10 -210 , 0 }xN. Let Ht  (I = 1,2) be spanned by

i
the single element ut, I = 1,2 (see (2.5) and (2.7)), and let E t(u) =

lUlIE, t"
-6

We take 7, to be the h extension procedure (and let n = 10 ). Then

L (t,N) and L 2(t,N) are shown for various p in Tables 2.1, 2.2 using

1, 4, 9 and 16 square elements.

It is observed that for p = 1, L (t,N) remains close to unity.

Similar results are observed for higher p for L (not reproduced here).

On the other hand, it is seen that for all p, L 2(t,N) seems to be unbounded

as t -0. (For t fixed, the locking ratio Is of course bounded, but can be

very large.)

Table 2.1. Locking ratio L (t,N) and L 2(t,N) for the h-version,

-6
p = 1 (n = 10 ) and the energy norm

t\N 3 8 15 24

10-1 1.21 1.06 1.05 1.05

L 1(t,) 1-2 1.2 10 101 .1
10 - 4 1.02 1.01 1.01 1.0110- L 1.00 1.00 1.00 1.00

10- 1 1.02 1.00 1.00 1.00

10 .2 1 .00 1.07 0.23 1.41

10- 4  1.00 1.08 1.29 1.53

10 - 6  1.00 1.08 1.29 1.53

11



Table 2.2. Locking ratio L 2(t,N) for the h-version,

p = 2,3,4 (i = 10- 6 ) and the energy norm

t\N 7 20 39 64

-1
10 1.00 1.00 1.00 1.00

-2
10 1.64 2.67 2.92 2.97

p 2 10- 4  1.77 4.81 10.06 15.90

-6
10 1.77 4.87 10.67 18.76

-1
10 1.00 1.00 1.00 1.00

-2
10 1.04 1.46 2.17 2.40

p=3 10- 4  1.05 1.79 4.98 10.43

-6
10 1.05 1.79 5.11 11.74

-1
10 1.15 1.00 1.00 1.00

-2
10 1.01 1.73 1.83 1.50

p=4 10 - 4  1,00 7.83 15.17 15.50

-6
10 1.00 9.01 43.33 101.56

In Table 2.3 we show L 2(t,N) for the p-version for one and 16 square

elements. We see that for one element, L2 stays bounded while for 16

elements it becomes unbounded.

12



Table 2.3. Locking ratio L2 (tN) for the p-version (-q 10- 6

and the energy norm

#of t\N 3 7 11 16 22
elem.

101 1.02 1.00 1.00 1.15 1.35
-2

10 1.00 1.64 1.04 1.01 1.00

10- 4  1.00 1.77 1.05 1.00 1.00

-6
10 1.00 1.77 1.05 1.00 1.00

# ofelem. t\N 24 64 104 160elem.
-1

10 1.00 1.00 1.00 1.00

-2
10 1.41 2.97 2.39 1.52

16 10- 4  1.53 15.91 10.43 15.56

-6
10 6 1.53 18.76 11.74 101.53

Let us now present the definition of locking.

Definition 2. 1. The extension procedure 9 is free from locking over the

region R for the family of problems {Pt' (t,N) e R} with respect to

solution sets R and measures 9 iff there exists 0 < -q < b-a such that

(2.14) lim sup sup L ( M <
N-w t

(t,N)eR

9 shows locking of order f(N) (where lim f(N) = w) iff for some i,
N-#w

(2.15) 0 < liM sup sup L(t,N,R,,Y,,)- = C <
N#o t f JN7

(t,N)eR

For the case that C is bounded (respectively, infinite), we say that

the order of locking is at most (respectively, at least) f(N). 0

13



Related to the above definition, we may also define robustness as

follows.

Definition 2.2. The extension procedure 9 is robust over the region R c R0

for the family of problems i t, (t,N) e R} with respect to solution

sets M and measures 9 iff

lrn sup sup Et(ut-u) = .
N-#w t uetW

(t,N),R 
t

It is robust with uniform order g(N) iff

(2.16) lim sup sup sup~ E (u -u N] ~1  
= <

t u0 E t  
jg =

(t,N)ER 
t

where g(N)-O as N-- c. a

Definitions 2.1 and 2.2 allow great flexibility in the way various compo-

nents may depend on t. This is because as illustrated by the examples in

this and the succeeding sections, different formulations require different t

dependencies.

The measure Et  in our definition can take various forms, for example,

the maximum stresses, stress at a point, etc. The two main choices discussed

here will be the V norm and the energy norm.

As t--)a, the approximation may deteriorate due to reasons other than

locking. For example, the exact solution of the Reissner-Mindlin plate model

with uniform load has a boundary layer of increasing strength as t--O. Hence

the deterioration of the approximation is due to the loss in regularity of the

solution as well as locking. The numerical resolution of these two effects is

based on different strategies. Our definition permits us to effectively

isolate the locking effects by sufficiently restricting the set X to exclude

unsmooth solutions.

14



By locking, we typically understand the behavior of the extension proce-

dure when t is much smaller than N -I (for a = 0). Hence, instead of

considering the region R0 = (O,b]xN (Figure 2.7a), we may be interested in a

region of the type R = {(t,N), 0 < t < b N} shown in Figure 2.7b. This is

why we have R explicitly in our definition. For the examples discussed In

this paper, however, we are able to prove all our results for the entire

region R = RO.

b b* t1

t t

o 0"0 - 1/N--o-- -11N ----

Figure 2.7a. The region RO . Figure 2.7b. The region R.

We will often need to bound below the denominator in (2.13). In this

connection, the following definition of the n-width will be useful. (Here

H is the unit ball in H.)

The n-width of the set H in V with respect to the measure E is

defined as

(2.17) d (V,H,E) = Infsup i' E(u-v)IM c V, dim M = N}N M tUeH k veM

with M being a linear manifold. When E(u) is given by IluIIV, we denote

this by dN(V,H).

The choice of the measures II.IIt and Et are not independent if we want

to study problems which make sense mathematically. We will restrict our

15



attention to choices of R,&,R such that for any (t,N) e R,

(2.18) d N(V, HtE t) CF A(N),

where F A(N)-- 0 as N---c, FA  independent of t, C independent of N

and t.

Condition (2.18) ensures that there are extension procedures for which it

is at least possible that the robustness can be achieved. Related to (2.18)

is the following condition, which ensures that our choice of extension

procedure has a chance to avoid locking: For any (t,N) e R,

(2.7) C1 F B(N) supB inf E t(u -v) C2 F B(N),

lB t 2BvutEt tEV

(t,N)eR

where F B(N)--0 as N--+, FB  independent of t, C independent of N

and t. We say that fR,9,&,R} is F B-admissible if (2.19) is satisfied.

Note that (2.19) can be an unduly broad condition to assume - for example, if

Et = 11.J}E, t , then (2.19) already implies robustness with uniform order FB ,

as well as absence of locking.

We now formulate

Assumption A. There exists 0 < 71 : b-a such that for (t,N) E R

(2.20) ClF (N) : supD Et(ut-uN) : C F (N),
10u eH B t 2 0

t t
(t,N)ER

where F0 (N)-40 as N--*o, F0  independent of t, CiC 2 > 0 independent

of t,N, but in general depending on n (u is the finite element
t

solution). o

Assumption A says that there exists an R on which the extension proce-

dure is robust with uniform order F (N). Under this ass,, ^n, the locking

16



ratio L takes a simpler form and Definition 2.1 Is equivalent to saying that

I is free from locking iff

(2.21) lim sup sup sup Et(ut-uN)(Fo(N))-1 = M < C
N_+ I t ueH0

(t,N)eR u

(a similar reformulation holds for (2.15)).

The following theorem relates the concepts of locking and robustness and

follows immediately from their definitions.

Theorem 2.1. Let S, R0 = SxN, R c RO , Y,9,9 be given and let Assumption A

hold. Then the extension procedure 9 is free from locking over the region

R iff it is robust over the region R with uniform order F (N). Moreover,

if f(N) is such that

f(N)F (N) = g(N)--+O as N---w,

then 9 shows locking of order f(N) iff it is robust with maximum uniform

order g(N). o

-1
Note that 9 is non-robust iff it shows locking of order (F (N)). In

this case we say that 9 shows complete locking.

Let us now discuss a special case of the bilinear form B (.,-) in terms

of which many locking problems can be formulated. Let V be imbedded in the

Hilbert space W, with norm [1'11W and inner product (.,.). We assume, for

t E S = (O,b]

(2.22) Bt(u,v) = a(u,v) +!(Cu Cv)
tt

is a symmetric bilinear form defined on VxV, where a(-,.) is a symmetric

bilinear form satisfying

1/2
(2.23) C 1IUIIv : (a(u,u)) 1 C211uIIv
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and C . V---W is a linear form satisfying

(2.24) ICvll w  :- C3 lvII v *.

Here C , C 2 C3  are constants independent of t (a(-,-) and C could be

made t-dependent as long as (2.23) - (2.24) were satisfied). We have chosen

(a,b] = (O,b] for convenience.

(2.22), (2.23), and (2.24) give immediately that for any t e (O,b], the

following version of (2.9) holds

(2.25) CiIlU1V _< IUIE,t _ C2 t-1/2I U[[v

We shall give examples of problems that satisfy the form (2.22) in

sections 3, 5, 6. For a number of such problems and the set R = {H t}, Ht c

H c V, it is useful to define lim HB = HB- c H c V. We define it as follows:
t-+O t 0

B Biff there exists a sequence {u t, ut e H t t S, and a constant
0 t

C independent of t such that

(2.26) !lutllE, t  <- C

(2.27) Iut - u0 IIv---O as t--+O.

Assume now u 0  HO, then by definition there are u t H t such that

(2.26) and (2.27) hold. Hence

1 1C 1 2 :5 C
-ilCutl W

so that

(2.28) lCutl W = O(t1 /
2)

from which it follows that for any u0 E H _ we have
00

(2.29) Cu0 = 0.

In many examples it turns out that Cu t--O at a rate Ot) instead of

18



(2.28) (see the beam example in Section 5 and Poisson locking in Section 6),

i.e.,

(2.30) ICutllw = O(t) (or o(t)).

Obviously (2.30) is satisfied if Condition (a) below holds.

Condition (C). Let 11 11t be such that IlU[]Et Ciluilt. Then for any ut

H8t there is a u0 e HBO n H (u depending on u ) such thatt0 0 t 0 t

(2.31) R{ut- UOilt <5 Ct 1/2

with C independent of t and ut. 1

Condition (a) is important in the context of various theorems and charac-

terizes an aspect of the regularity of the problem.

We now prove some general theorems for the form (2.22) which hold when

the spaces are assumed independent of t.the

Theorem 2.2. (A) Let {H} H c H c V, ;={t}, 9 t VN
t' t t t t t

VN, 9 = {E } Et(u) = i1uR V , S = (O,b], R = {(t,N), 0 < t 5 bN} c R0 and

let lim H H8O. Assume further that the quadruple {3.,.,,R} is
t i r a

F -admissible. Then the extension process 9 is free from locking over R

only if

(2.32) g(N) = sup B inf" Ilu-wII V _ CF0 (N).
urH0 weV

Cw=O

More generally, it shows locking of order fNN) only if

(2.33) g(N) 5 CF (N)f(N).

Moreover, if

(2.34) g(N) 2 CF (N)f(N)
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then the extension process shows locking of at least order f(N).

(B) Suppose, in addition, that Condition (a) holds. Then I is free

from locking over R iff (2.32) holds. It shows locking of order f(N) iff

(2.35) C F (N)f(N) 5 g(N) S C2Fo (N)f(N).

Proof. First, it is easy to see that Assumption A is satisfied with the same

F0  because for t 2 n the energy norm 11'"1E,t is equivalent to the norm

111V" Suppose there Is no locking (i.e., 9 is free of locking) over R.

Let N be fixed. Then by (2.21), for any (tN) we have for ut e Ht,

Hut -u { N 1 : CFo(N .

Let now u E and u E H be such that (2.26) and (2.27) hold. Because
0  0 t t

VN is finite-dimensional, there exists a subsequence of {uN} such that
t

N N N
ut -u 0 EV in V and

NNlO - U011V : CFo0(N),

Nwith Cu0 = Cuo = 0. Hence (2.32) holds. (2.33) follows similarly by replac-

ing F (N) by Fo(N(N).

Next suppose that the locking is of order o(f()). Then by (2.33)

g(N) :5 O(Fo0(N)f(N)),

which contradicts (2.34). Hence the locking is of at least order M().

Suppose now that Condition (a) holds. We have to show that if (2.32)

holds there is no locking. So let for any ut e H, u0  HEO n H be such
t , u0  0 t

that (2.31) holds. Then we may write

(2.36) ut =u 0o+(ut-Uo0 = 0o+ to

where Xt e Ht satisfies
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(2.37) 11ixt 1t  :5 Ct / .

Hence we have

Hlut - u tN EN S C inf Hu - V 11

-< C infH +iuOxt- VIIE , t

< C nf I u 0o-v lllv+ inf II t-v211Et ,
IV 1 C o , v 2 eN,

Cv1=O

B

using the fact that u0 e H0  and hence Cu = 0. This gives, by (2.32) and0 0 0

(2.25)

_< C{F 0 (N) + t - 1/2 inf lJXt - v2 11V}.
v2 vo

Since Xt satisfies (2.37), we use the Fo-admissibility (2.19) to get

< C{F 0 (N) + t- /2 t /2F(N)}

_< CF o(N).

Then we see that

N N 1 CFo(N)l t - u t l V  t Cu t u E jt  0

so that on R, L(t,N) remains bounded, i.e., there is no locking in the V

norm.

Suppose now that (2.35) holds. Then we may replace F (N) in the above

by F (N)f(N) so that

Rut - uN11 -< Clu uN 1 CF (N)f(N)
It-utI V CIut t 0

which shows locking of order at most f(N). Also, since (2.34) is satisfied,
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the locking is of order at least f(N), i.e., of order f(N).

Conversely, if the locking is of order f(N), then (2.33) holds. If

g(N) = o(F (N)f(N)), then, just like before, we establish that

N
Hlut - u t V N 11 :-O(Fo(N)f(N))

so that the locking is of order at most o(f(N)), a contradiction. 0

We have actually proved a stronger result, namely,

Theorem 2.3. (A) Let the conditions of Theorem 2.2 (A) hold. Then Y is

free from locking with respect to the energy norm over R only if (2.32)

holds. It shows locking of order fCN) only if (2.33) holds. It shows

locking of order at least f(N) if (2.34) holds.

(B) Let Condition (a) be true. Then 9 is free from locking over R

iff (2.32) holds. It shows locking of order fNN) iff (2.35) holds.

Proof. As before, Assumption A is satisfied so that in both cases we can use

the same F (N). The rest of the proof is the same. 0

Theorems 2.2 and 2.3 show that under certain circumstances, we need only

check condition (2.32) (or (2.35)) to determine whether or not locking exists.

The energy norm and the V norm are two important error measures. The

relation between them in terms of locking is expressed in the following

theorem.

Theorem 2.4. (A) Let the assumptions of Theorem 2.2 (A) hold. Then 9 is

free from locking over the region R c R0  with respect to the V norm if it

Is free from locking with respect to the energy norm. It shows locking of

order f(N) In the V norm only if it shows locking of at least order f(N)

in the energy norm.

(B) Moreover, if, in addition, Condition (a) holds, then 9 is free from
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locking with respect to the V norm iff it is free with respect to the energy

norm. It shows locking of order f(N) in the V norm iff it shows locking

of order f(N) in the energy norm.

Proof. Part (A) follows immediately using the fact that (2.20) holds with the

same F0 (N for both 1I.Iv and 1.11E,t . Part (B) follows by using Theorems

2.2 (B) and 2.3 (B). )

3. Lockina and robustness results for the model problem.

In this section we state and prove some theoretical results for the model

problem, which explain the computational observations presented in the

previous section.

We first note that we may write for t e (0,0] (f < 1)

(3.1) B1(uv) = av + au 8v + 1 8u 8v dxldxt .J LL8x1i: ; Jxj 1 'J 1xJ t 1 2'

which is of the form (2.22) with

a(uv) = aVu.Vv dx1dx2

C- uCu = 8.
8X2

Replacing --L by t, we have
1-t

t e (0,0/1-$] = (O,b].

Clearly (2.23) - (2.24) are satisfied (W = L 2(f2).
B1 and B2

Instead of analyzing the forms Bt  B on the same meshes as in
t t

Section 2, we will now deal with the analogous problem of considering only Bt
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on unrotated and rotated meshes (Figure 3.1). This will simplify some nota-

tion. Although the problems analyzed now are not totally identical with the

ones addressed in Section 2, they show the same features and are essentially

equivalent.

Let S 9 R2 be a triangle or parallelogram and let P CS) denote thep

set of all polynomials of total degree (degree in each variable) < p if S

is a triangle (parallelogram). We will talk about spaces VN of continuous

piecewise polynomials of degree 5 p on the meshes in Figure 3. 1 satisfying

ulS e P (S) for any S in the mesh, for any u e VN.

S p

C d

Figure 3.1. Unrotated and rotated meshes

(a) Unrotated triangular mesh (b) Unrotated rectangular mesh

(c) Rotated triangular mesh (d) Rotated rectangular mesh
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We will also find It convenient to work with a suitably scaled version of

(3.1), given by the change of variables

(3.2) X= x1  x2 = x2Vt' U(XX2) U(Xl'X 2

Under the transformation (3.2) we see that (3.1) may be written as

Bt(u,v) = 1! f Va'Vv dx1 dx2

t

with (t = {(X2 )X 1I 1, x2 1 5 At-} so that we just get Laplace's equa-

tion over a very thin domain. The corresponding meshes from Figure 3.1 now

look as shown in Figure 3.2.

h h

'EEE I _

Figure 3.2. Scaled unrotated and rotated meshes.

(a) Scaled unrotated triangular mesh (b) Scaled unrotated rectangular mesh

(c) Scaled rotated triangular mesh (d) Scaled rotated rectangular mesh

The above families of uniform meshes are all examples of more general

quasiuniform meshes. We will refer to triangular meshes satisfying the

minimum (respectively, maximum) angle condition If the minimal angle of any

triangle in the mesh is larger than c (respectively, maximal angle Is smal-

ler than i-c), where c is fixed for the family of meshes (see [21).

Analogously, we will say that a rectangular mesh satisfies the ratio condition
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if the ratio of the largest to the smallest sides in each rectangle is bounded

above independently of the meshes.

Let us now look at the scaled triangular meshes. We observe that as

t->O, the minimum angle condition is violated for both (a) and (c). How-

ever, we observe a clear difference in terms of the maximum angle condition.

Mesh (a) satisfies the maximum angle condition uniformly with respect to t

as h-->O, while mesh (c) violates this condition as t--+O. Similarly, the

ratio condition for the rectangular mesh (b) holds uniformly as t--40 but

not for the rotated mesh Cd). The reason that meshes (c) and (d) lead to

locking is essentially due to the violation of the maximum angle condition as

t -- 0.

Let us define the following weighted norms over £2 in terms of the cor-

responding norms over Qt

(3.3) 11 U11 ti/ C.() t 111u Hk (ft

Note that IllUIHRC£) = HullEt , the energy norm.

We will need the following lemma about n-widths.

Lemma 3.1. Let 2 c R, I = 1,2, be a polygonal domain (for I - 1, £2 is

an interval). Then

(3.4) d N(HI(Q),Hk+(0)) N-  , k >1,

where the equivalency constants depend on k and Q but are independent of

N.

For the proof, see [12].

Lemma 3.2. Let {VN I c HIM£2) be subspaces of piecewise polynomials of fixed

degree p on quasi-uniform triangular or rectangular meshes which satisfy the

uniform maximum angle condition (for triangles) or the ratio condition (for
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rectangles). Then

N-min(p, k)/2
(3.5) sup inf lu-vI 2 CN

uH k+(0) Vev H (D)
lU11H k+1 (Q) :5

where C is independent of N, but depends on p,k,Q and the characteriza-

tion of the mesh (quasi-uniformlty constant and maximum angle condition).

Proof. For k : p (3.5) follows from Lemma 3.1. Let k > p. In (3.5) we

assumed that VN c H(Q), I.e., VN is the space of conforming piecewise

polynomials of degree p. Let us denote vN c L2 () to be the space of

piecewise polynomials of degree p without continuity conditions between

elements. Then CN : N 5 N and

2 1/2su[ f : I up infv-vI
O(N) sup inf 1Iu-v H5 sup inf lu-vl1

ueH kC1() veVH ueH +Q) VEVN H (Q)

U H k+1(Q) C U)Hk+1() 5

where the sum above is over all single elements 5' of the mesh.

Hence It is sufficient to prove

VN) a CN -p 2.

Obviously also N = N(h) N h 2 z R. Consider now a polynomial u of degree

p+1 (total (triangles) or separate degrees (rectangles)). Then u e

Hk+l(). Hence if (3.5) is not true then

(3.6) O(R) 5 f(h)hp

where f(h)--4O as h--O. Since the mesh Is quasi-uniform with uniform

angle condition the following Inverse Inequality holds on every element 9

for any polynomial of degree at most p + 1

:2Ch7t-S 1ViHt 0 5 t 5 s,
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where C is independent of 5,t,sh. Hence if (3.6) is satisfied then we

have for vh e

2~1/2

I ,u - v_,,2 .+ 1  1/ Cf(h),

J n Hp t(5,)

assuming that 1luliHp+1( ) = 1. But since vh is a polynomial of degree p,
HPP+(vh '2P1.u

ax+'h - 0, 1 = 1,2 and hence il-+l .. 11 --)0 as h--0, which is a
axpiax iP+ L2(0l)

1 1 2

contradiction.

We now consider the case of the h-version on unrotated meshes followed

by the analysis of the rotated meshes. For simplicity we will assume that

either rN = 0 or rD = 0.

Theorem 3.1. Consider the problem (2.10) with Bt given by (3.1). Let VN
t t

be the set of piecewise polynomials of degree S p (p 2 1) on an unrotated

mesh of the form shown in Figure 3.1 a,b, with mesh spacing h = h(N). Let

Ht be the space of functions given by

Ht  = {ulllull k+l < 0}

t

with k p. Let the error measure E t(u) = 1iUUE, t = 11u1iHR ). Then the

extension procedure 3 is free from locking over the region R0 = (O,b]xM

and is robust with uniform order g(N) = O(N-p/2 ) over this region.

Proof. Let u e H . Then u e Hk+1( ), with k 2 p. Consider first the

case that plecewise linear functions are used on a triangular mesh. Then the

proof of the sufficiency of the maximum angle condition [2] easily gives

(3.7) inf IJu-vII : Chilull

en H(fl) 2(
ttt

where VN is the image of VN and (due to the mesh satisfying the maximum
t t
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angle condition) C is independent of h and t.

Translating back to 0, we obtain

iv nt lu-VllE,t t - ChJlull2(Q]).

Now by (2.12) we have (since h -2 = N)

(3.8) ilu-uN -1/2 k

for all t. We now take i = b in (2.13) which gives, using Lemma 3.2,

L(t,N) = 2 lu- u NiE,tN1/2 < C.

t
11ull 251

H .
t

Hence, Definition 2.1 shows that I is free from locking. The robustness

follows easily from (3.8).

For the case of piecewise polynomials of degree p > 1, the sufficiency

of the maximum angle condition may once again be established using the argu-

ments in [2]. This leads to an analog of (3.8) of the form

Ilu -uNllE, t S ChP Hull p+1(n : N -/ 1 1H 1(Q)

t

Using Lemma 3.2 again, we establish the required results. The rectangulav

case follows similarly. 0

Remark. The above theorem will hold for more general quasi-uniform meshes as

well. It explains the results in Figures 2.1 - 2.3 for the unrotated case.

Note that Theorem 2.3 shows immediately that with the same choice of Ht,

there is no locking (and uniform robustness) in the V (i.e., H ) norm as

well.
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Another interesting question is to examine locking in the V norm when,

instead of Ht+i(Q), Ht  is taken to be an unweighted space. For this case,

we expect once again that there will be no locking. We prove this assertion

for the case p = 1, using the equivalence between finite difference and

finite element schemes.

Theorem 3.2. Consider the problem (2.10) with Bt given by (3.1) to be the

approximate problem corresponding to (2.1) - (2.2) with rN = 0. Assume that

= { t} where Jt = {VN} is the space of continuous, piecewise linear func-

tions on the triangular mesh shown in Figure 3.1 a. Let Ht = C4 (5)

(independently of t). Let the error measure be Et(u) = lull H1  ) Then

is free of locking over R0 = (O,b]x and is robust with uniform order

OC - 1/2) there.

Proof. Consider the mesh shown in Figure 3.1 a, with Q being gi,,en by
2

(-1,1) and the nodes being labeled Aij , i = 0,1,...,M, j = 0,1,...,M,

where M = 2/h (Ao0 corresponding to the node with coordinates (-1,-i)).

N
Let ut , the exact solution and ut, the finite element solution at

N
A~j be denoted by uj, uNj, respectively. Then by the usual relation

between finite element and finite difference solutions for a regular triangu-
N

lar mesh, we have for I,j such that A e 2 with u N = 0 when A e r,
uN =tuN +2 N N N N t2-i

(3.9) -A Ju = t(-u ij +2ij-ui+j) + (-ui, +2ui,j-U,j+I) = th

where

_ 1 f j dxdx
=i h 2 1~d2

Here, OtJ Is the standard "hat function" at AtJ. We are given u E

C ( ), i.e.,
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Cu (4) K

Using this, we may show

flij = flIj + B Sljh 2

where fij = f(Alj) and B ij satisfies IB' 1 CK with C Independent of

u,h and t. Moreover, for the exact solution we have

(3.10) -A1 Jut = h2 (tf +D h2 )
tt Ii lJ

N

where again ID i 5 CK. Using (3.9) - (3.10), we see that with X UN - ut ,ii

we have XIj =0 on r and

(3.11) -A ;t  h4H

with IH Ij 1 CK. Let

71(x,y) = 1-y 2

so that

7ij = (Jh)(2-jh) 2 0.

Then nIj = 0 for j = 0,M, and for Aij in the interior of 2,

-A -q= 2h2 .

2t
Let X = Ch2K7- X. Then

(3.12) -A'JX = 2Ch4K-h 4HIj Z Ch4K > 0.

Also, Xij 0 on the boundary r of n. Suppose Xij < 0 in £ for some

Aii 9 r. Then there exists a minimum value of Xi < 0 In Q. At such a

value, for any t,

-A ijX 0,
t3
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contradicting (3.12). Hence, Xi -> 0 on f2, i.e.,

Xij < CKh2nij.

Similarly, taking = 2Kn +X, we see that

Xii 2- -CKh 2i j .

Noting that In jl 1 1, we have

lljIl -< CKh2 .

This shows that the difference between the interpolant of ut and the finite

element solution at the nodal points is O(h 2), from which

(3.13) Hlu - u N 1 -Ch = O(N- /2).

t tH 1 M) :

Using Lemma 3.2. we see that we have the same rate as (3.5) with p = 1.

Since (3.13) holds for all t, the theorem follows.

Remark. In Theorem 3.2 we have used some assumptions only for the sake of

simplicity. For example, we assumed r = r which can be relaxed. Further,

we assumed Ht = C (4) () and triangular meshes, which can also be relaxed.

One could of course consider the case when Ht = Hk(M2) and E t(u) =

llullE, t . To see why this combination is not appropriate for analysis, consider

functions on Q that are functions of the variable x2  alone, i.e., e

Hk(I). For such a function, by Lemma 3.1,

dN(H (I),Hk(I)) N(k- l)

Now considering these functions as functions of both x1 and x2  we have

* C Hk(fl) so that we get from the above
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l~c1 -(k-1)dN(HC(),Hk(),E t) -- CN -

Hence, since dN (H1 (fl),Hk(),E t ) does not converge to zero uniformly in t

as N--.), condition (2.18) is violated. Therefore, locking will exist

(albeit in a trivial way) for any choice of approximation.

Let us now consider the effect of using rotated meshes. Figures 2.1 -

2.3 indicate that there is locking both in the V norm and the energy norm.

To explain this, let us first prove

Lemma 3.3. Let the extension process 9 be based on the h-version using a

continuous piecewise polynomial of fixed degrees 5 p on a rotated mesh

(Figure 3.1 c,d). Let u be a function defined on 0 such that Cu = au/8x2

= 0 and u is not a polynomial on Q. Then there exists a constant C > 0,

independent of N, such that

(3.8) inf> Iu-wIV = inf Iju-wI > C for all N.wEVN V wE (fl)

Cw=O P
Cw=-O

Proof. Consider a triangular mesh of the form shown in Figure 3.1 c. Let VN

be the space of piecewise polynomials of total degree : p on this mesh and

let w e VN satisfy Cw = 0. Then over any element 9J, w must be of the

form

P
w = ZaiX.

i=0

For any two triangles 9J Ik with a common side r jk we see that the vari-

able x1  is never fixed along rjk. Hence the continuity of w implies that

aij = alk.

Repeating this argument, we see that w e P (n). Since u * P (0), we obtain
p p
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(3.8). The same argument works for rectangular meshes.

We now obtain

Theorem 3.3. Consider the problems (2.10), (3.1). Let VN be the set of
t

piecewise polynomials of fixed degree 5 p (p 2 1) on a rotated mesh of the

form shown in Figure 3.1 c or d, with mesh spacing h = h(N). Let the error

1 1 = H 2r 2(u) {U tmeasure be 9, = {E } E t u) = IluIIHl(Q) or = = and

let R = {(t,N), 0 < t S bN} c R0 . Further, assume that the quadruple

(M,?,gR) is F o-admissible. Then the extension procedure 9 shows complete

locking and is not robust with any uniform order over R.

Proof. We can directly apply Theorem 2.2(A) or Theorem 2.3(A). Lemma 3.3

shows that the condition (2.32) is not satisfied. Hence 9 cannot be free

from locking over R. The lack of robustness follows as well from Lemma

3.3. 0

Suppose we now choose Ht to be a space of the form Hk(f), as in

Theorem 3.2. Then, since the space of admissible functions in Theorem 3.3 is

more restrictive, we again see that there will be locking in the H1 (Q) norm.

Let us mention here that an alternate proof of Theorem 3.3 may be derived by

considering the necessity of the maximum angle condition (see [2]).

Let us now examine what happens when we use the p-version instead of the

h-version. We have

Theorem 3.4. Consider the problems (2.10), (3.1), with r = 0. Let Vt be
D

the set of piecewise polynomials of degree S p = p(N) on any of the meshes

shown in Figure 3.1 (i.e., rotated or unrotated), with fixed mesh size h

independent of N. Let HBt be the space of functions given by
t

= {u Ilull .k)
t H k+1

t
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with k > 0. Let the error measure be E t(u) = lull E, t . Then the p-version

extension procedure 9 is free from locking over the region R0 = (O,b]x

and is robust with uniform order f(N) = O(N-k / 2 ) over this region.
kl5 5

Proof. Let u e Hk+l (0). Denote 1 {II < 1 < 1), 21 = {I < ;

t14'12 1 4

I .< By the extension approach of Nikolsky and Babich (see [111] Theorem

5
3.9) we extend u to u on 2: for -- < x -1 ,

k+l
1(1i,2) = iu[-1 -( l+l)k l,2)

e=1

with the exact form of the coefficients A being described in [11]. u is

5
analogously extended on 1 < x < T and then on x to get (x1 x 2 ) which

preserves the norm, i.e.,

IuI $ Cilull
Hlk+lfl) 

Hk+t()n}
t t

Now we use the same approach as in [3] Lemma 3. 1. We transform f onto

Q = { 111 < 1 121 <

with the transformation

5

X = -sin
5

x2 = -sin 2

and let v(41 ,42) = U(X1 ,X2). Then obviously

11II Hkt+l (Q) :5 ClIuII k~t +l(hi :5 Cllull k+l ('' Q)

t t t

Now function v can be extended periodically on R = I1 1 < n, 1I21 < }

and it is symmetric with respect to the lines = 2 =n Writing
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00 W

v =Re a ajlee(1+)
j=-Co e=-W

we denote

p p

Vp= Re Z L ajlei(
J 91+92)

j=-p e=-p

and get

Iv-v 111 : Cp-kl ull,+ 1pHt (Q) H

Transforming v back into variables x and x2 and denoting it by V we

see that V is a polynomial of degree p in x and x2. We get on Q

ilu-VI 1 -- cp-kllullH1(0) H . lc )
t

and because llullH1(M) = llullEt we have

t

where the infimum is taken over all polynomials of degree 2p and where C

depends on k but Is independent of N, t and u.

For t = 7? > 0, 111 and 11-11 k+l(,) are equivalent to IIH(l

and ljujl Hk+1(,), respectively, with the equivalency constants dependent on

-q Using Lemma 3.1 we get

1 -k/2/11lI+

(3.10) d Nu(H w() t k+1(M) 2 CN

and the statement follows from (3.10) and (3.9). da

Remark. The statement and proof of Theorem 3.4 above carry ver identically

if instead of (3.3), we use the following weaker definition of the norm
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(3.11) ,lull(2  =alu,,2 +t -1U 2

t Ox lx5k 8x: +cc2 Sk2 "

a2 al1

In fact, Theorem 3.1 also holds with the above weaker definition - instead of

using the maximum angle condition, one can establish It directly by consider-

ing interpolation on the region fl. Hence the results in this section are

valid if (3.3) is replaced by (3.11).

For the case of just one square, the above theorem guarantees that the

rate of convergence is the same, independent of t, for both the rotated and

unrotated case. This is clearly observed in Figure 2.4. Note that our

1 -Vtx 2function there was ut = sin x1 e which satisfies

uE H kCM V k.t

Since this function is very well behaved, we can actually assert a stronger

robustness result for it (see Theorem 3.5 below).

For the case of more than one square, Theorem 3.4 asserts that the rate

of convergence is independent of t both with rotated and unrotated meshes.

However, in actual practice, while the unrotated case will be insensitive to

t, the rotated case will not. This is because it is known from [4] that the

error for the finite element method using piecewise polynomials of degree S p

on a quasi-uniform mesh with mesh size h is of the form

(3.12) u-k lulllH1(0) 5 p kH k+1c0)'

When the p-version Is used, the factor Chmin(kp) = Chk (for p large)

appears as a constant. !n terms of locking, when t is bounded away from 0,
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one observes the full effect of this constant. However, for t close to 0,

Lemma 3.3 shows that this constant is much larger. This explains the data in

Table 2.3. For a rigorous demonstration of this effect, we begin by proving

some lemmas on the approximability of smooth solutions like (2.5).

Lemma 3.4. Let f(x) e CW(I), I = (-1,1), be such that for any k a 0,

(k k
(3.13) Maxf (x)I < Ad

with 0 < d < 1 and A independent of k and d. Then

(3.14) inf 11f -v1 0 
< CAdP+lp(p),

vep (I)
p

where

1

P(P) P+ (p+l)

Moreover, suppose that there is a B > 0 such that f(P+1)(x does not

change sign on I and

(3.15) minf x) a Bd

Then

(3.16) Inf 11 - v11 0 
>: cBdP+I p(p),

vET (I)
epM

where C is independent of p. (Here 1'110 = 11 11L2(i ) .

Proof. We write

(3.17) f(x) = ZakLk(x)

k=O

where Lk(x) is the k-th Legendre polynomial. Then we have

k k
S (-1k k (lx)}
k( 2kk! dxk
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and coefficients ak  in (3.17) satisfy

=2k+l f x)L()dx"ak- 2 f(x)Lk(

-1

Hence we have
11

(3.18) ,ak, 2k+l Il (-x2)kf(k) (x)dxl : Adk  2k+l I C-x )k dx.
2klk! i1 2 klk!

Denoting

2k -(k!) 2  2k+1

J(k) (1-x2) k dx = 2 2 k!

-1

we get

1-/2 -1/2

so that

Ck /2Ad
k

2 kk!

Now

E2 nf If _v1 a~ 2 2 < CA 2  d2
= n lfvlo M ak 2k+1 E (2 kW 2

p k=p+l p+l (

CA2C 2 (f 2(p+l)

((p~e.)') 2 Z()CA l)' 2(P

since d 1 and the sum is a geometric series. This gives (3.14). On the

other hand,
22

max ak 2k+ .
k~p+1

Hence using (3.15) and (3.18), we see that (3.16) holds. a

For any 0 < d S 1, let us denote by 2d the set of all functions
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f(x) E CW(1) such that for each p Z I there exist at most M intervals
M

ip) = 1,...,M (M independent of p), with J I- U Ip'  having...... = -J=l

measure 2 r > 0 (T independent of p) and

min If(p)(x)I ? Bdp

xej p

and

max If(P)C(x)I Adp

XeI

with A,B independent of p. Then we have

Lemma 3.5. Let { h} be a sequence of quasi-uniform meshes on I =(-1,1)

N(h) h h h h h h
and let I= U I = (x,x h x J+- Ch h Ch Letj~l J I j 1) , hj = + xh - C~ j Ch e

fVp} denote a sequence of subspaces of H (I) of piecewise polynomials of
h

hdegree 5p on the mesh 9h. Let f E 2d" Thendegred

(3.19) C dPhPp(p-I) inf If-VI l I  C 2dPhPp(p-I)'
1 ~VEV h H1 MI dh~~-

where C,C 2 depend on T,A,B,M, but are independent of d,h,p and where

the first inequality holds provided h is sufficiently small.

Proof. Let g(x) = f'(x) and let

(3.20) eh - inf lgh - W11
p-1,j wp_ (I) L2(I )

p-1 j 2 J

Transforming Ih to the standard interval I we get by applying Lemma 3.4

(3.21) eh +h

If Ih e JP, then also
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(3.22) eh > P+lhp+(1/2)P(p1)
p1,J -

Let now w(x) be the polynomial of degree p- i which attains the
hle

infimum (3.20). Then on I let

v(x) = f(x ) + f w(x)dx.
xj

Because of the construction of v(x), by expanding f'(x) into Legendre

polynomials we have

v(x J)= f(xj+j).

Hence in this manner we construct v(x) on the entire I with v(x) e H IM).

From (3.21) we have by squaring and summing over j

11f,(X)~ ~ -'XlLM 5cd P+j hPp(p-1).

For h sufficiently small, we have S intervals contained in JP with C
h

independent of p. Hence we also get using (3.22)

liv'(x) -f'(x)l 0  Cd P+lhPp(p-l). 0

Let us note that the function sin x 1 e 2 and e- Vr"x 2 e 2 V. Hence theI1

function ut given by (2.5) satisfies

(3.23) u1 E Ht =i®Vit

Note that for sin xI, M = 1 and (3.19) will hold for h 5 1. Also, if

h > 1, then (3.19) holds for p even.

We now prove the following result for the case when the solution set X =

(H t } where Ht  is given by (3.23). Here Ht  is in fact a countably normed
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space and HE is characterized by t,A,B,d,r,M.
t

Theorem 3.5. Consider the problem in Theorem 3.4 with Ht = 1I *" Then

the h-p extension procedure 9 using piecewise polynomials of degree - pN

on unrotated meshes of mesh size hN, is free from locking over the region

R = (O,b]xY' and is robust with uniform order f(N) = O(h Np(pN-1)) there.

Proof. We consider for simplicity only the case r = o. Let u E H t so
D t t

that

with e 21' X.-, VrE" Then for any y = v(x1 )w(x2 ) E VN,

(3.24) Ilut-Yll2 t = II'x-v'wlI2+l10 X' -vw'lI

II' '1o1zlo ~ - wllv 21 0 [(ll2+ -vwI

2 2

+ I - vlIl211w' lo2}.

Suppose v,w e VP are the best approximations to gX, respectively, in the
h

sense of Lemma 3.5, i.e.,

II19' - V' 11 0 <5 C h p p (p - 1)

iX' -W _110 S Ctp/2h~p(p-1).

Then (3.24) gives for p a 1,

(3.25) Ilut -MILE, t :5 ChP(p-1)

uniformly in t. This proves the robustness result. To show that there is no

locking, we must verify that (3.25) is the best rate possible. Now it may be

easily shown that
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inf ui 2 H9 -v 2
N  t - Yt E, t = nP I- E , t

y-E v, WeYp
h

2: Inf Ill'x - v' l2  = I 1 " V' 112 1X 2
vevp 0 vEVp  00
Vh h

Using Lemma 3.5 then shows that (3.25) is the best rate possible. Then by
Definition 2.1, there is no locking over RO .  o

Remark. Note that the above theorem also shows that there Is no locking for

the p-version.

We now look at the case when rotated meshes are used. We will distin-

guish between two cases. For the case that no refinement is present, i.e.,

only one element is used, we essentially get the unrotated case with one

element. [We could understand this case also by considering the rotated solu-
2

tion ut as in Section 2 (as mentioned in the beginning of this section, this

Is equivalent).] We will observe no locking in this case. When refinement is

present, Lemma 3.3 tells us that for the limit problem, the mesh behaves

essentially like one with a single element. This will show locking for both

the p-version and h-p version.

Theorem 3.6. Consider the problems (2.10), (3.1) (rD = 0). Let Vt be the
D t

set of piecewise polynomials of degree p = pN on a family of rotated meshes

of the form shown in Figure 3.1 d, with mesh spacing h = hN . Let HB =

XI 102/t and Et(u) = lluIE t or IIUIH1(02). Let I consist of the

p-version (hN fixed) or the h-p version. For the p-version on a single

element, 9 is free from locking and uniformly robust with order O(p(pN-1)).

For a refined mesh with mesh size hN -< 1, the extension process I shows

locking of at least order (2/hN)PN but is uniformly robust with order

P(PN 
4).
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Proof. For a single element, we have h = 2. We may either consider the pair

U 1.B u(t,) or ut, B (.,.). In either case, Lemma 3.5 may be used, like in
t t t t

the proof of Theorem 3.5, to show that there is no locking and one gets uni-

form robustness of order f(N) = O(p(pN-1)).

When refinement is present with h : 1, we see that for the limit

problem, by Lemma 3.3, the mesh behaves like a single element, i.e., one with

mesh size 2. However, for t bounded away from 0, one gets the same

convergence rate as in Theorem 3.5. This implies that

F (N) = inf ju -wlI v = O(h NPH(PN- M.

but for Cu = 0,

inf Iju -wj v (Fo0(N)) - I 1 0(( 2)PH).

Cw=O

Hence by (2.34) we get locking of at least order (2/hN)PN. The method 5;

is still uniformly robust with the rate using one square, i.e., O(p(pN-l).0

In the above proof, we used the necessity of the condition (2.32) to

prove that there was locking. We mention here that for this problem, Condi-

tion (a) does not hold in general so that (2.32) would not be sufficient

except in special cases. For example, taking Ht = spanu 1) gives

1
ut--4u 0 = sin x

and

Iut-uo lEt 0( 1)

so that if 11-11E,t : CH.I11t, then

[[utl- uo 4 = 00),
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violating (a). One could, of course, define M such that we only look at a

class of problems for which (a) holds.

Let us summarize the various locking phenomena we have dealt with in this

section in a table. (U a Unrotated, R a Rotated.)

Extension Process Ht  Et Locking Robustness
(uniform order)

h-version, degree p, U H+(0), k 2 p H', H' No O(N- p12 )

t

(degree 1) C (4) H1 No O(N- p 2)

k+1 1 1
h-version, degree p, R H t ( ), k > 0 H , H Yes None

-Hk+1(), k > 0 H1 Yes None

p-version, U Hk+1(Q), k > 0 H1, H1  No O(N-k/2 )
t t

p-version, R Hk+l(fl), k > 0 H , H1  No O(N- k / 2 )

p or h-p version, U X 2 Ht  No
I Vo TO( (PN)

p-version, R, 1 square 9ix2,rE H No

p or h-p version, R 2ix2 H1  Yes OWp

refined

We see from the above table the effect of changing various choices of the

extension procedure, Ht and Et -

Let us remark that our results will be valid for any rotated mesh. We

have considered the case that the rotation is 45 for convenience, since

locking will be observed most readily in this case. However, Lemma 3.3 is

true for other angles of rotation as well.
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4. Locking and non quasi-uniform meshes.

Our definition for locking in Section 2 allows considerable flexibility

in terms of the various components R,8,3, etc., which may depend on the

parameter t. We now exploit this flexibility to analyze an example where

locking is caused by the failure of an inverse estimate to hold when the

meshes are non quasi-uniform.

Let I = [0,1] and t e (0, 1-] For each N, let h = N xj = jh,
'3j

j = 0,..., N. Define 6 = h(1-2t), c = ht and let U hI be the sequence of
t

meshes shown in Figure 4.1 consisting of nodal points x , x1 ,xi. Let V=vh
I I t t

1 h
c H (I) be the space of piecewise linear functions on 7t This defines the

1 h NeV
family {ft} = 9. Given u e H (I), for t > 0, we define uh = uN Vt =

Vh by (2.10) with
t

Bt(u,v) = B(u,v) = J uvdx,

2 2 j

11I111 I II I I II I
x0 x1 x 2  x x

h
Figure 4.1. The mesh 5t"

ht

i.e., uth Is the L2 projection of u on vh. This defines our extension
titn

procedure 9. We choose Ht = H2 (I) A Hl(I) and Et(u) = lull1 and ask0 0
whether locking occurs as t--+O. Note that the only component depending on

t is I = {0t} (due to the mesh). We let R = {(t,N), 0 < t 5 }.
t03

Theorem 4.1. Let P t}, X and & be as above. Then 9 shows locking of
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O(N) for any region R = {(t,N), 0 < t : b N} c R and is not robust with

any uniform order.

Proof. First it is easy to see that the quadruple (,9,&,R) is F -

admissible with F (N) = CN- 1 due to standard results about the H 1I)

projection on V. For any 7) ? 0 > 0, the mesh is quasi-uniform on R

so that the space v satisfies the inverse assumption. This leads to
t

Assumption A being satisfied so that Theorem 2.1 holds with F (N) as above.

Let us keep h fixed and let t-O. Then it may be easily verified

h h Vthat in the L norm, -u eVh where _ is a set of discontinuous
2 oru 0 0 0

h
linear functions on [(J-l)h,jh]. Also u0  satisfies the limit problem

h h
(4.1) uoVdX uvdx, u (0) = u (1) = O,

fj.0~ J 0 0
J-l)h J-1)h

with v being a linear function on [(j-1)h,jh, j = 1,..., N.

Suppose 5; is robust with some uniform order. Then for t > 0, h

fixed,

Uu h 11 : IU11l4 Iu-u thI l  5 C,
h

with C Independent of t. Hence there exists {u }, a convergent
tk

subsequence such that

h -h 1
u tk--u 0  in H (I.

h h
Since ut--u 0  in L we must have

-h h
u0 = u0.

But this is a contradiction, since uh e Vh, satisfying (4.1) will not be
0 0'

continuous In general, i.e., u0 h H (1). Hence Y, is not robust with any
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uniform order. Also, because F (N) z N - , Y shows locking of order N. o

Remark 4.1. Note that if we choose E(u) = Ilull0, then Y will be free from

locking.

5. The clamped loaded beam.

In this section we look at the robustness of some discretization schemes

for a one-dimensional problem involving the Timoshenko beam. This problem

(along with various extension processes for it) has been analyzed in the

context of locking in [1], [91. Here, we present a simplified alternate

analysis, using our theory, to prove some of the results in these references.

We do this by showing that Condition (a) is satisfied, so that Theorems 2.2

(A) and (B) hold. We may therefore restrict attention to the limiting problem

which is essentially a one-dimensional biharmonic problem.

The problem we look at is

( w') = f on I = (0,1)

(5.2) 1(0t-w')' = g on I

(5.3) Ot(0) = 0r(1) = wt(O) = wt(i) = 0.

Here, wt and *t represent the vertical displacement and rotation, respect-

ively, of the vertical fibers of the beam, which is subject to a vertical body

force -tg(x) (f can be related in applications to dislocations or moments).

The thickness Vt is assumed to lie in the interval (0,1].

We may cast (5.1) - (5.3) Into the following variational form. Let V =

H 1()xH 1(). Then we wish to find ut = (Ot,wt) e V satisfying
0 0
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(5.4) Bt(ut.v) = b(ut.v)+1(Cut,Cv) = F(v)
t T'

for all v = (O,z) e V. with b(ut,v) = (0,0'), Cut = -w. Here (
t t.

represents the L 2(I) inner product and F is given by

F(v) = <f,O>+<g,z>,

where <-,-> is the duality between H (I) and H- (I).

It is easy to see [11 that

(5.5) 1 1u112 < .1U 12 < r1 +2lvjt 12

with the energy norm being defined as usual. The bilinear form can be put in

the form (2.22) if, as in (3.1), we take 1-- instead of t, giving for
1-t

u = (0,w)

a(u,u) = b(u,u) + (Cu, Cu) > 1 U1 2

so that (2.23) - (2.24) are satisfied.

In [1] it has been shown that for f,g e H- (I) and 0 < t 5 1, the

following a priori estimate holds for k = 0,1,..., for the problem (5.4) (or

equivalently, (5.1) - (5.3))

(5.6) [ut 11k+ +t1ICutIk < C(IIfII11 +IIgIIk1 ) ,

where C is a constant depending only on k and

1utik1 t= ttlk+1+ [lwtilk+ I .

Hence a natural choice for the solution set Ht = H t,k+ is to define Ht,k+l

c H = (Hk+l(I) n H0(I))
2  by

0

(5.7) Ht,k+l = {uIhuIhtk+I < Ca

with the norm 11.11t = ]].lit,k+1 given by
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11 ull t,k+l = ii +

t~k~l 11u11k I I ECullk-

Using (5.1) - (5.2). we also have for k = 0, 1 .....

(5.8) IlfIk_1 +I l gllk _ 1  S Cjiutilt,k+1.

From (5.4), we see that as t--40, the Kirchoff hypothesis

(5.9) Cu = 0

gets imposed so that any u0  in the limiting set HO must satisfy (5.9).
0 0

Moreover, using (5.6) with k = 0, we see that if f,g are held fixed in

(5.4) and t--+O, then

ICu tI0 = O(t).

Suppose now we are given a ut t We show that Condition ( )
t t,k+Ii

holds. First it is clear that JujE S ,k< l -
Ejt t,k+1 ol .Dfn ~

by equations (5.1) - (5.3) so that by (5.8), lifjjkI' igllkI 1 5 C and denote

by (uoc O  = (0w 0oWo) the solution of

-0"+CO = f on T

<1 = g on I

(S. 10)

wow = 0 on I

00(o) = 00(1) = w0 (0) = w0 (1).

(5.10) has the equivalent variational form; find (uoCo) E VxS satisfying

b(uoV) +(<o,CV) = f(v) for all v e V,

(5.11)

(Cuoln) = 0 for all n e S,

with S = L 2(I). Then (5.11) has a unique solution which satisfies
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(5.12) llUOlk+l + II%01k : C(llfllkI + llgllk_ 1 ).

(5.12) is proven in [1] for k = 0 and can be obtained for higher k from

(5.10) by differentiation. (5.12) shows that u0 c H0 n Ht,k+1 . Using (5.8),

(5.13) IIUOlk+l + 11<011k < CllutIlt,k+l.

Now by (5.1) and (5.10), we have

(5.14) -(0t-O)" + C(U) = O

which corresponds to (using (5.4) and (5.11))

(5.15) b((ut-uo),v) +t1(C(ut-uo),Cv) = (o,CV)

from which, putting v = ut -u0 , we get

(5.16) Out - UoIE, t - -tllC(ut-uoliO - f 0 -+fUt oE,t"

Hence

2 2llut - UollEP t <- ic lo

i.e. ,

(5.17) aut-UoIE,t < t1/2 Rollo"

Next, differentiating (5.14) and using (5.2), (5,i0) we see

(0t-OO)" = 0

so that

(0t-CO) at , (0 t-00), = a tx b bt

where at,b t  are constants depending on t. Using (5.17),

at,b t  5 t 1/2l]11< 0

51



from which (using (5.1) - (5.3), (5.10) and (5.14)), the following estimate

may be established

Olut - u O u t , k + 1 < t 1/2 Il<011k .

Using (5.13), this gives

llut - U ollt,k+ <5 tl1/211lutllt,k+l

so that (a) is satisfied. Hence we may take HB to be the set of all
0, k+l

Uo s constructed from ut e HB through the equations (5.10).
t t,k

We will be interested in locking in the l[.[1V  norm. Then by Theorem

2.2, a necessary and sufficient condition for the absence of locking is that

for all u e Ho_
0, k+ 1'

(5.18) inf Ilu-wll v < C F0 (N) = inf u wllu ,

Cw=O

We will denote by {Sp} a sequence of C subspaces consisting of piecewise
h

polynomials of degree 5 p on a quasi-uniform family of meshes on I.

Theorem 5.1. Consider the problem (5.4). Let {V= (S) 2} = t where

p a 1 is kept fixed and the h extension is used (h = N). Let X = {Ht},
Ht = H t,k+ be given by (5.7), with k a p. Let the error measure E t(u) =

llullV. Then the h-version extension procedure 3; shows locking of order

-1 p-i
h It is uniformly robust with order hN for p > 1.

Proof. We must estimate the two infimums in (5.18). First we have for u =

(,w) k+

(5.19) FoMN = nf f 110- Oil+1w - zll 1  0( Oh)

by standard results, since O,w e H k+l(IM, k a p. Next, we estimate for

u = (O,w) e HB  and -w' =0,
t, k+l
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AN= infsp {II0@II1 IIwI-z1}"

Obviously,

(5.20) AN = inf 1{lw'-z'11 +llw-zl ) = pnf 11 w-zl 2 .
zes h zs

For p = 1, AN = O(l). For p Z 2, standard spline theory [13] shows that

for k p,

(5.21) A Oh P-1

(5.19), (5.21) together with Theorem 2.2 prove the result. o

Let us now consider the p-version.

Theorem 5.2. Consider the problem (5.4). Let {VN = (Sh)2} = t where h

is fixed and the p-extension (p = pN) is used. Let Ht = H t,k+l k > 0,

and Et(u) = HlullV. Then the p-version extension procedure 9 is free from

locking and uniformly robust with order P-k

Proof. By standard p-version approximation theory we have, for u = (0,w) e

O, k+l'

F (N) = inf {II-0II + llw-z1 1 } O(Pk)
0 0,zesp

since 0,w e Hk+l(I). Next, for u e H , Cu = 0 so that w' = e
0, k+ 1

Hk+l(I), i.e., w e Hk+2 (I). Hence

AN = nf" IIw- z112 = O(PN(k+2
-2)) = (k)

This proves the theorem. o

The results In (I, [91 also indicate what happens when the measure Et

53



is changed. We have summarized these results in a table. The set Ht =

H i,k+ In each case (with k -> p for the h-version).

Table 3.1. Locking and robustness for different choices of 3 and Et .

Extension Robustness
Process 9 Et Locking (Uniform order)

h-version IHuIIV  Yes None

p = 1 1111 Yes None

[1] 11w11l1  Yes None

ii110 Yes None

11wll 0  Yes None

h-version Iull v  Yes O(h )

p > 2 110111 Yes O(h; 1 )

II110 Yes O(h )

11w110  Yes, experimentally O(hp)

p-version Iullv . No O(P-k )

9w11011 No O(p-k)

11W111  No 0 (P-N )

11011o  No O(p (k+l ) )

Iliwo  No O(PN(k+l ) )

Remark 5.1. Additional results in (1] deal with the h-version of a mixed

formulation for which locking is eliminated. The reference [91 also analyzes

an h-p extension procedure which is free from locking.
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6. Nearly incompressible materials.

The procedure outlined in the previous section can be used to analyze

"Poisson Locking" as well, which occurs in the case of the elasticity

equations when the Poisson ratio v is close to 0.5. More specifically,

consider the following problem

40 1 -+
(6.1) -AuP -2 -grad d v = 0 in 0

2

(6.2) (C (u +8,j -- ) 1 5 S 2 on r,
2: ij-2v i unj=91

J=1

where {n 1= is the unit outward normal to r and the strain tensor {c}
j J=1 ij

is given by

4 1ia +a
IJ 218x-J axj1"

It Is assumed that

f .ds = 0

1-2i 4

for any rigid motion R. Let denote t - 12 and ut = u. As t-O,

the constraint

Cu = div u= 0

gets enforced. ut converges to a limit u0  which satisfies

-AuO -grad CO = 0 In 0

(6.3) div u0 = 0 in n

2

Z cij(uonj+Li~ni = 1  1 1 2 onr

j=l

which is the Stokes' equation, with -PCO being the pressure.
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The corresponding variational forms for (6.1) and (6.3) are respectively

given by (5.4) and (5.11) with V = (0), S = { e L2 (Q), fn-dx = 0),

2

b(uV)= c1J(u)cIj v)dx'

i,J=i

F) J f-yds.

If the domain is smooth, we obtain all the usual shift theorems (as in

the case of the example In Section 5). Also the argument of equations (5.15)

- (5.16) carries over identically, so that (5.17) will again hold. In fact,

as we have shown In [51, Condition (a) will hold for this problem, even for

certain cases when the domain is not smooth.

As a result, Theorem 2.2 applies again and we have the following result

when an appropriate solution set Ht = H is taken.

Theorem 6.1. The extension procedure 7 is robust with respect to error

measure Et( ) = 11U111, and solution set H for the variational form of (6.1)

- (6.2) with uniform order g(N) given by

(6.4) g(N) = sup inf llU-II.
-*HB -* VN

div u=0 div w=O

It is free from locking Iff

(6.5) g(N) : CFo(N) = C sup inf II - IW
-EHB * VN

and shows locking of order f(N) iff

g(N) z CF0 (N)f(N).

Note that In [61, (6.5) was stated only as a necessary condition, whereas we
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show that it is sufficient as well, which simplifies the subsequent analysis.

In particular, the above result shows that all the numerical schemes analyzed

in (61 which were shown to be robust for the limit problem will also be robust

for the sequence of problems given by (6.1) - (6.2).

In [51, we use Theorem 6.1 and some results developed in Section 2 to

investigate the robustness of various schemes for nearly incompressible

materials. In particular, we analyze the locking that can result through the

use of curved elements.
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